
World Transactions on Engineering and Technology Education       © 2007 UICEE 
Vol.6, No.1, 2007 

 97 

 

 
 
 

INTRODUCTION 
 
A parachute is an inflatable device made of soft fabric, such as 
nylon, which is used to slow down the speed of an object that 
moves through a fluid by creating a form of resistance 
commonly known as drag. Although parachutes are typically 
used to slow the descent of a person or object to the surface of 
Earth, or some other planet, from a high elevation, they are also 
utilised to increase the horizontal deceleration of a vehicle, 
such as an airplane or a space shuttle, after touchdown has been 
achieved. 
 
Parachutes come in different shapes and designs, and represent 
various technologies, which are refined as new materials are 
produced and new techniques are invented. They are used in a 
wide variety of applications as well: military, personnel, cargo, 
and vehicle recovery, hobby, and education [1][2]. For 
example, each of the two Mars Explorer Rovers (MERs) 
launched by NASA in 2003 weighed 400 lbs and was equipped 
with a parachute of diameter 28 feet. They deployed 
successfully and slowed the descent of the MERs safely 
through the thin atmosphere of Mars [1]. 
 
The weights and sizes of parachutes vary greatly from the 
small sizes used by hobbyists to the large ones that are 
designed for the emergency braking of large military aircrafts. 
However, in all cases, it is necessary to estimate the time and 
distance necessary for the drag generated to slow the object to 
which the parachute is attached. The distance is necessary 
because engineers need to know whether or not, a fighter jet, 
for example, can land on a runway that is located, say, on the 
deck of an aircraft carrier. The time needs to be known because 
it is important to know for how long the pilots will be subjected 
to large deceleration forces. 
 
The use of the Buckingham Pi theorem in dimensional analysis 
suggests that the aerodynamic drag force that is exerted on 

parachutes is a quadratic function of speed [2][3]. The purpose 
of this article is to use experimental data to demonstrate that 
such is the case [2]. The author does so in two different, but 
complementary, ways. First, curve-fitting a polynomial to the 
collected data is used. This allows one to verify directly 
whether or not the nature of the force is quadratic and to 
estimate the corresponding drag coefficients. Then, the 
terminal speed of a parachute obtained using an assumed 
quadratic force is used to determine the corresponding drag 
coefficient. Finally, the drag coefficients obtained from the two 
methods are computed. 
 
MATHEMATICAL MODELS OF DRAG FORCES 
 
In practice, it is often necessary to determine the coefficient of 
the drag of a parachute in order to assess its effectiveness in 
decelerating the movement of the payload being carried [1]. 
 
When a parachute of mass m is falling under the action of 
gravity, it is subjected to two distinct forces: its own weight, 
mg, and the drag force, FD. Applying Newton’s second law of 
motion in the vertical direction yields the following differential 
equation for the motion of the parachute: 
 

m
dV
dt

F mgD+ − = 0 ,                        (1) 

 
where V is the vertical speed, t is the time, and g is the 
acceleration of gravity. 
 
The mathematical nature of the drag force is difficult to 
determine a priori, except in special circumstances. Two of 
these are considered: 
 
• Linear damping, as given by Stokes’ law [3]; 
• Quadratic damping, as suggested by dimensional analysis [4]. 
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Stokes Drag 
 
For a sphere of radius a that is falling through a fluid of 
viscosity μ, after it has achieved a terminal speed Vt, the drag 
force FD is given by Stokes’ law [3]. This is: 
 

F V aD t= 6πμ .                                  (2) 
 
It is often convenient to borrow the form of this drag force in 
order to obtain a first approximation to the drag force that is 
exerted on an object when the speeds are very small. In such 
cases, one rewrites Eq.(8) as: 
 

F k VD = 1 ,                                     (3) 
 
where k1 is a coefficient to be obtained experimentally. Using 
Eq.(3) in Eq.(1), one gets: 
 

m
dV
dt

k V mg+ − =1 0 .                          (4) 

 
For simplicity, it is assumed that the particle is released from 
rest. Thus, V(t = 0) = 0. 
 
After separating the variables, and integrating and rearranging 
the terms, the solution of Eq.(4) is found to be: 
 

V
V
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= −
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1

                                 (5) 

 
Where Vt is the terminal velocity, which is achieved when the 
acceleration vanishes. It is given by: 
 

V
mg
kt =

1
                                      (6) 

 
Whereas Stokes law assumes that terminal speed has  
been achieved, for particles that are dropped in a viscous 
medium, it takes a finite time interval and a finite displacement 
before they reach terminal speed. Thus, in laboratory 
experiments, for example, the application of Stokes’ law  
first requires the determination of when and where terminal 
velocity is achievable. However, during the time preceding  
the attainment of terminal speed, the nature of the drag force is 
not known, a priori, so one needs to try other forms of 
damping. 
 
Quadratic Damping 
 
From dimensional analysis, it is determined that the drag force 
FD on a smooth sphere of diameter d, moving through a viscous 
and incompressible fluid of mass density ρ and viscosity μ is 
given by: 
 

F V d f
Vd

D = ρ
ρ
μ

2 2 ( )  ,                       (7) 

 
where f is some unknown function [4]. It is well-known that 
the form of this equation is generally valid for any object. In 
this case, it is written as:  
 

F k VD = 2
2                                    (8) 

where k2 is a coefficient that is determined experimentally. For 
an object that is submerged in an incompressible fluid in a 
region of space where free surface effects are negligible, 
dimensional analysis shows that the drag force has the 
mathematical expression given by: 
 

F
AC

VD
D≡

ρ
2

2  ,                               (9) 

 
where ρ is the mass density of the fluid, A the cross-sectional 
area of the immersed object and CD the so-called drag 
coefficient [4]. Although the latter is usually presumed to be 
constant, for simplicity, generally, such is not the case. Using 
Eq.(8) in Eq.(1) one gets: 
 

m
dV
dt

k V mg+ − =2
2 0 .                       (10) 

 
For simplicity, it is assumed that the particle is released from 
rest. Thus, V(t = 0) = 0. 
 
After separating the variables, and integrating and rearranging 
the terms, the solution is found to be: 
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where y is the total distance travelled by the particle and Vt is 
the terminal velocity achieved when the acceleration vanishes. 
This is given by: 
 

V
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;                               (12) 

 
General Drag 
 
From the two preceding examples, one infers that, in general, 
the drag force can then be expressed as: 
 

F k VD n
n=                                 (13) 

 
Using Eq.(13) in Eq.(1), one gets: 
 

m
dV
dt

k V mgn
n+ − = 0                    (14) 

 
In this case, the terminal speed was shown to be given by the 
hypergeometric functions of Gauss [5-8]. 
 
EXPERIMENTAL DATA 
 
It is considered that the motion of a sky diver, who has been 
released from a slow moving aircraft, is such that the diver falls 
straight down. The diver is equipped with a parachute that 
deploys at the appropriate elevation. While it is generally 
assumed to be a polynomial function of the speed, the 
aerodynamic force, FD, on such a parachute is not known in 
general. It is estimated experimentally by testing falling objects 
like rockets that are equipped with similar parachutes; or by 
testing parachutes in wind tunnels or similar facilities [1]. The 
data so collected are plotted and, by curve-fitting different 
polynomials to the data, one can extract effective drag 
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coefficients from them. One can also use the relationship 
between the terminal velocity and the drag force to explore the 
types of aerodynamic forces that are realistic and compatible 
with collected data.  
 
Both methods are illustrated here using the data shown in Table 
1, which were extracted from the experimental results of 
Nakka, who designed three small parachutes, tested each of 
them at different speeds, and measured the force applied to 
each parachute at the tested speeds [2]. The first two columns 
of Table 1 show his data [7]. When these data are plotted as 
shown in Figures 1 to 3, and the best parabola is fitted to each 
set, one gets the drag forces shown in column two of Table 2. 
However, when one uses the terminal speed as shown in Eq. 
(12), one gets the results shown in column three of Table 2. 
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Figure 1: Drag force versus speed for a 25-inch parachute. 
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Figure 2: Drag force versus speed for a 30-inch parachute. 
 

y = 0.0092x2 + 0.028x
R2 = 0.9985

0
2
4
6
8

10
12
14

0 20 40
Speed ( fps)

Fo
rc

e(
lb

)
 

 
Figure 3: Drag force versus speed for a 1-metre parachute. 

 
Table 1: Data estimated from the Figures of Richard Nakka [2]. 

 
Speed (fps) Drag force( lb) Drag Coefficient k2(terminal speed) 

 25-in Nylon parachute  k2 = 0.00431 
0 0   
19 1.4 0.55  
27 3.0 0.57  
37 5.7 0.64  
 30-in Nylon parachute  k2 = 0.00585 
0 0   
14 1.7 0.78  
22 2.5 0.62  
29 4.9 0.62  
37 7.8 0.63  
 1-m Nylon parachute  k2 = 0.01027 
0 0   
18 3.5 0.62  
25 6.7 0.58  
27 7.2 0.55  
36 13 0.59  

 
Table 2: A comparison of results curve-fit versus terminal speed. 

 
Parachute FD from curve-fitting FD from terminal speed 
25-inch 0 0044 0 0091
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2

2

. . ,
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R
−

=
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30-inch 0 0051 0 0209
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V V
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PRACTICAL USE OF THE RESULTS 
 
The results of Table 1 are detailed below. 
 
A 25-inch parachute made of nylon can decelerate rockets 
weighing 2-4 lbs to touchdown speeds of 20 fps and 30 fps, 
respectively. Hence, a rocket of 3 lbs would have a touchdown 
speed of 26 fps. If we set k2 = 0.00431 lb.s2/ft2 and weight = 3 lbs 
in Eq.(12), a speed of 26.38 fps is calculated. Nakka reports a 
speed of 26 fps [7]. Thus, the terminal speed calculated here 
and that obtained by Nakka only differ by 1.5% [2]. 
 
A 30-inch parachute made of nylon can decelerate rockets 
weighing 3-5 lbs to touchdown speeds of 20 fps and 30 fps, 
respectively. Hence, a rocket of 4 lbs would have a touchdown 
speed of 26 fps. If we set k2 = 0.00585 lb.s2/ft2 and weight = 
4lbs in Eq.(12), a speed of 26.14 fps is calculated. Nakka 
reports a speed of 26 fps [7]. Thus, the terminal speed 
calculated here and that obtained by Nakka only differ by  
0.6% [2]. 
 
A 1-metre parachute made of nylon can decelerate rockets 
weighing 4-9 lbs to touchdown speeds of 20 fps and 30 fps, 
respectively. k2 = 0.010271 lb.s2/ft2. Hence, a rocket of 6.5 lbs 
would have a touchdown speed of 25.15 fps. If we set k2 = 
0.010271 lb.s2/ft2 and weight = 6.5 lbs in Eq.(12), a speed of 
25.15 fps is calculated. Nakka reports a speed of 25 fps [2]. 
Thus, the terminal speed calculated here and that obtained by 
Nakka only differ by 0.6% [2]. The corresponding drag 
coefficients obtained by using average speeds are summarised 
in Table 3. 
 

Table 3: Sample parachute drag coefficients by Nakka. 
 

Descent velocity (fps) Descent mode CD 
23 fps Restrained 1.26 
20 fps Oscillating 1.60 
16 fps Gliding 2.40 

 
THE DRAG COEFFICIENT OF A PARACHUTE 
 
The drag coefficient of a parachute depends upon geometric 
factors and material properties, as well as the aerodynamic 
characteristics of its flight [6][7]. 
 
The geometric factors include the surface area of the canopy, 
the shape of the canopy, the length of the shroud lines and the 
aspect ratio (L/D) of the parachute (shroud line length)/(canopy 
diameter). The material properties include the porosity of the 
canopy and the permeability of the canopy. The aerodynamic 
characteristics of the parachute’s flight include the speed of 
descent, the gliding characteristics and the patterns of air flow 
around the canopy. 
 
A given parachute may descend in four different modes: 
restrained, gliding, oscillating (also called spiralling), or a 
combination of the last two. When the rates of descent are low, 
gliding tends to prevail; when they are intermediate, it is 
oscillations that prevail; and when the rates are high, mode 
combination is common. Thus, the drag coefficients can vary 
greatly, depending upon the mode of descent, even when the 
speeds are not very different, as shown in Table 3 [6][7]. 
 
While the shape of the canopy can vary considerably, from 
hemispherical, semi-ellipsoidal to parasheet, the drag  
 

coefficient is based not on the shape itself, but rather upon the 
area of the canopy. The drag coefficient increases with the 
length of the shroud lines. It also increases as the aspect ratio 
decreases. This may be due to the fact that small aspect ratios 
indicate a shape that is similar to that of a bluff body, whereas 
large aspect ratios simulate aerodynamic shapes [2-4]. 
 
The rate at which air escapes from the parachute through the 
surface area of the canopy is known as the permeability of the 
parachute. It is, of course, related to the porosity of the material 
of which the canopy is made. Experiments have shown that 
drag is not affected greatly by the permeability of the canopy. 
 
It is a weak function of the speed of descent and, indeed, it 
decreases at higher velocities. The exact reasons for this 
behaviour are not clear at this time. However, it is speculated 
that this may be due to the increased porosity of the canopy 
that results from increased tension at high speeds, or it may be 
due to increases in the Reynolds numbers, as happens in flow 
past spheres and cylinders. Alternatively, it may be due to 
changes to the shape of the canopy that accompany high 
speeds; or even to a combination of these factors [6][7]. 
 
CONCLUSIONS 
 
Two methods that are often necessary for the determination of 
drag coefficients of parachutes are presented. Curve-fitting a 
quadratic form to collected data was used because it allows one 
to verify whether or not the nature of the force is quadratic and 
to estimate the corresponding drag coefficients. When known, 
the terminal speed of the parachute can also be used to find the 
drag coefficients. It has been found that, while the first method 
allows one to verify the quadratic nature of the force, it 
introduces an error in the estimation of the drag coefficient. 
The second method assumes that the force is a quadratic 
function of the speed and, although it provides no inherent 
mechanism to verify that assumption, it gives a second estimate 
of the drag coefficient. A comparison of the results from these 
two methods indicates that they are very close and their 
combined use helps improve the accuracy of the determination 
of the drag force. 
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